A Possible Reaction Channel from $\mathbf{B r O N O}$ to BrNO_{2}

Hai Tao $\mathrm{YU}^{1,2}$, Yu Juan CHI^{1}, Hong Gang $\mathrm{FU}^{1,2 *}$, Xu Ri HUANG ${ }^{2}$, Ze Sheng LI 2, Jia Zhong SUN ${ }^{2}$
${ }^{1}$ College of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080
${ }^{2}$ State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023

Abstract

A possible isomerization channel from BrONO (bromine nitrite) to BrNO_{2} (nitryl bromide) is predicted by means of MP2 and QCISD(T) (single-point) methods. The channel is a direct bromine abstraction reaction from BrONO molecule by NO_{2} in which the forward reaction barrier is $89.30 \mathrm{~kJ} / \mathrm{mol}$ at final $\mathrm{UQCISD}(\mathrm{T}) / 6-311+\mathrm{G}(2 \mathrm{df}) / / \mathrm{UMP} 2 / 6-311 \mathrm{G}(\mathrm{d})$ level of theory with zero-point energies included. The result can explain the available experiments very well.

Keywords: BrNO_{2}, BrONO , isomerization, abstraction.

The reaction between bromine atoms and NO_{2} has attracted much attention because of the potential importance of BrNO_{2} and its isomers in the atmosphere, and many experimental and theoretical studies have been performed on the preparation, spectra, structures, vibrational frequencies, bonding and heats of formation ${ }^{1-9}$. In previous experiments ${ }^{2-4}, \mathrm{BrNO}_{2}$ was found to be the major product in the reaction of bromine with NO_{2}. But very recently, Orlando and his coworker ${ }^{5}$ considered the BrONO, an isomer of BrNO_{2}, as the major product in similar reaction system. And then, some differences in experimental conditions or assignment of products were expected to exist. Therefore, a detailed knowledge about the isomerization and possible reaction mechanism is very desirable and helpful for interpreting the available experiments.

In several experiments ${ }^{2-4}, \mathrm{BrNO}_{2}$ was considered as the major product in the gas phase reaction of Br with NO_{2}, and in following photolysis experiments cis- BrONO and/or trans-BrONO were found to appear in the reaction system, which indicated obviously the existence of the isomerizations $\mathrm{BrNO}_{2} \rightarrow$ trans- $\mathrm{BrONO} \rightarrow$ cis- BrONO . From computed results we can easily know that the isomerization barrier for $\mathrm{BrNO}_{2} \rightarrow$ trans- BrONO is higher than $210.00 \mathrm{~kJ} / \mathrm{mol}$ (all energies in the paper were obtained at UQCISD(T)/6-311+G(2df)//UMP2/6-311G(d) with zero-point energies inclusion), and the reverse barrier is about $171.83 \mathrm{~kJ} / \mathrm{mol}$. In the view of higher thermodynamical stability of cis-BrONO than trans-BrONO by $14.24 \mathrm{~kJ} / \mathrm{mol}$ (this work), we can safely expect cis- BrONO and BrNO_{2} to be kinetically stable species. Furthermore, our computational results also show that the reaction between Br and NO_{2}
*E-mail: fuhg@hlju.edu.cn
will directly lead to the formation of cis-BrONO with a $9.76 \mathrm{~kJ} / \mathrm{mol}$ reaction barrier height. The mechanism is in agreement with Orlando's experiment ${ }^{5}$ in which cis-BrONO is the major product. Based on the reaction mechanism, in discussed experiments ${ }^{2-4}$ with the major product BrNO_{2}, the first-step product is also expected to be BrONO followed by the isomerization $\mathrm{BrONO} \rightarrow \mathrm{BrNO}_{2}$. But the isomerization can not seem to happen because of the $171.83 \mathrm{~kJ} / \mathrm{mol}$ reaction barrier height. Unfortunately, BrONO are almost turned to BrNO_{2} in these experiments ${ }^{2-4}$ except Orlando's one ${ }^{5}$. After noting some differences in these experiments, we reasonably think that the concentration of NO_{2} plays an important role in the systems. Figure $\mathbf{1}$ indicates the optimized geometries of some stationary points in the reaction trans- $\mathrm{BrONO}+\mathrm{NO}_{2} \rightarrow$ $\mathrm{TS} \rightarrow \mathrm{BrNO}_{2}+\mathrm{NO}_{2}$ (1). TS is bromine abstract reaction transition state which is approved to accurately connect the reactants and products in (1) by means of intrinsic reaction coordinate calculations at UMP2/6-311G(d) level. The abstract reaction barrier is only $89.30 \mathrm{~kJ} / \mathrm{mol}$, which is lower than the direct isomerization barrier $171.83 \mathrm{~kJ} / \mathrm{mol}$ for trans- $\mathrm{BrONO} \rightarrow \mathrm{BrNO}_{2}$. But process (1) is a bimolecular reaction, and it greatly depends on the concentrations of reactants. In experiments ${ }^{2-4}$ with major product BrNO_{2}, the concentration of NO_{2} is in large excess over Br , which makes the reaction (1) happen easily and lead to the formation of product BrNO_{2}. But in Orlando's experiment ${ }^{5}, \mathrm{NO}_{2}$ is almost equivalent in concentration with Br , which can not make the reaction (1) happen sufficiently, and the final product is BrONO. Therefore, our computational results are in good agreement with the available experiments, and predict a very possible low-barrier reaction pathway from BrONO to BrNO_{2} in enriched-NO_{2}-containing system.

Figure 1 Predicted geometries of stationary points at UMP2/6-311G(d) level of theory. Bond lengths are in nanometers, and bond angles in degrees

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 20171015, 20171016), the Natural Science Foundation of Heilongjiang Province of China (No. E00-16), and the Science Foundation for Excellent Youth of Heilongjiang University (2002).

References

1. B. J. Finlayson-Pitts, F. E. Livingston, H. N. Berko, Nature, 1990, 343, 622.
2. A. Mellouki, G. Laverdet, J. L. Jourdain, G. Poulet, Int. J. Chem. Kinet., 1989, 21, 1161.
3. D. E. Tevault, J. Phys. Chem., 1979, 83, 2217.
4. K. D. Kreutter, J. M. Nicovich, P. H. Wine, J. Phys. Chem., 1991, 95, 4020.
5. J. J. Orlando, J. B. Burkholder, J. Phys. Chem. A, 2000, 104, 2048.
6. D. Scheffler, H. Grothe, H. Willner, Inorg. Chem., 1997, 36, 335.
7. D. Scheffler, H. Willner, Inorg. Chem., 1998, 37, 4500.
8. T. J. Lee, J. Phys. Chem., 1996, 100, 19847.
9. A. Frenzel, V. Scheer, W. Behnke, C. Zetzsch, J. Phys. Chem., 1996, 100, 16447.

Received 22 February, 2002

2003 Subscription and Ordering Information

Printed Edition	China	Hongkong \& Macau	Outside China
	RMB. 321.60	RMB. 700.00	$\$ 321.60$

